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  Abstract:   Empirical research with Markov regime- 

switching models often requires the researcher not only 

to estimate the model but also to test for the presence of 

more than one regime. Despite the need for both estima-

tion and testing, methods of estimation are better under-

stood than are methods of testing. We bridge this gap by 

explaining, in detail, how to apply the newest results in 

the theory of regime testing, developed by Cho and White 

[Cho, J. S., and H. White 2007. “Testing for Regime Switch-

ing.” Econometrica 75 (6): 1671–1720.]. A key insight in Cho 

and White is to expand the null region to guard against 

false rejection of the null hypothesis due to a small group 

of extremal values. Because the resulting asymptotic null 

distribution is a function of a Gaussian process, the criti-

cal values are not obtained from a closed-form distribu-

tion such as the  χ  ² . Moreover, the critical values depend 

on the covariance of the Gaussian process and so depend 

both on the specification of the model and the specifica-

tion of the parameter space. To ease the task of calculat-

ing critical values, we describe the limit theory and detail 

how the covariance of the Gaussian process is linked to 

the specification of both the model and the parameter 

space. Further, we show that for linear models with Gauss-

ian errors, the relevant para meter space governs a stand-

ardized index of regime separation, so one need only refer 

to the tabulated critical values we present. While the test 

statistic under study is designed to detect regime switch-

ing in the intercept, the test can be used to detect broader 

alternatives in which slope coefficients and error vari-

ances may also switch over regimes. 
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1     Introduction 
 Markov regime-switching models, in which the intercept 

varies over regimes, have many uses in applied econo-

metrics. Researchers have used these models to describe 

the behavior of GDP, to detect multiple equilibria and to 

describe the behavior of asset prices. While estimation 

of these models is straightforward, testing for the possi-

ble presence of more than one regime is more difficult. 

Researchers are aware that test statistics could be based 

on a likelihood ratio, but are generally uncertain of how 

to obtain critical values from the asymptotic null distribu-

tion of the test statistics. Our goal is to enable researchers 

to obtain critical values from the asymptotic null distribu-

tion of the test statistic to provide valid inference regard-

ing the presence of distinct regimes. 

 Cho and White (2007) provide an asymptotic null dis-

tribution that yields the critical values on which such a 

test should be based. Because the resulting asymptotic 

null distribution is a function of a Gaussian process, the 

critical values are not obtained from a closed-form dis-

tribution such as the  χ  2 . Further, because the Gaussian 

process depends upon both the specified model and the 

specified parameter space, the critical values differ across 

applications and cannot be obtained from a single refer-

ence calculation, such as is the case for the Dickey-Fuller 

distribution. In consequence, users face the daunting 

task of linking a general Gaussian process limit result to 

the specific structure of their model. We ease this task by 

detailing how the Gaussian process and, most importantly, 

how the covariance among the elements of the Gaussian 

process are linked to the specification of the model. 

 For the leading case of a linear model with Gaussian 

errors we bring forward two important points. First, the 

covariance of the Gaussian process does not depend on the 

presence of covariates, so the single analytic calculation we 

detail suffices for all such models. Second, the parameters 

of the model that characterize regime switching enter the 

covariance only through the standardized distance between 

regime means. In consequence, a researcher does not need 

to specify the parameter space that contains the regime-spe-

cific intercepts, but only the number of standard deviations 
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26      Carter and Steigerwald: Markov Regime-Switching Tests

that separate the regime means. The first two points together 

imply that a researcher testing for regime switching under a 

linear model with Gaussian errors can refer to the tabulated 

critical values that appear in Section 4. 

 To better understand the class of linear models to which 

the test does, and does not, apply, we preview our results. 

While the test is designed to detect regime switching in the 

intercept, the critical values that appear in Section 4 can be 

used to test for regime switching in which slope coefficients 

and error variances also vary over regimes (see Section 5). 

We urge caution before applying the test to models with 

autoregressions, however, as the underlying estimator is 

inconsistent for autoregressive models (see Section 2). The 

test can also be applied to a system of equations where the 

same critical values apply, although the standardization of 

the distance between regimes must account for the error 

variance from each equation (see Section 3.2). 

 To frame the issues, consider the basic regime-switch-

ing model estimated by Cecchetti, Lam, and Mark (1990), 

in which the growth rate of annual, per capita GNP,  Y 
t
  , is 

   Y 
t
   =   θ   

0
  +   δ S 

t
   +  U 

t
  ,  (1) 

 where  U 
t 

   ∼   i.i.d.N (0,   ν  ). The unobserved state variable 

 S 
t
   ∈  { 0, 1 }  indicates regimes, with  S 

t
 =   0 corresponding to 

a period of contraction in the economy and S 
t
 =  1 corres-

ponding to a period of economic expansion. Further, 

the sequence   { }
1

n

t t
S

=  is generated as a first-order Markov 

process with  � ( S 
t
   = 1 |  S 

t
   −1

 =  0) =  p  
0
  and  � ( S 

t
 =   0 |  S 

t
   −1

 =  1) =  p  
1
 . The 

empirical feature that expansions tend to last longer than 

contractions is captured by p 
0
   >  p 

1
 . 

 A key issue is to test the null hypothesis of one regime 

against the alternative of Markov switching between two 

regimes. As   δ   = 0 corresponds to only a single regime, it 

seems natural to base such a test on the  t  statistic for   δ  . 

Yet the fact that the unobserved sequence  {  S 
t
   }  depends 

on parameters (  p  
0
 ,  p  

1
 ) that vanish from the model if   δ   = 0, 

renders standard inference with the  t  statistic invalid. Tests 

based on the Lagrange Multiplier principle are also invalid, 

because the gradient of the likelihood function is identi-

cally zero when evaluated at null estimates. Valid tests of 

the null hypothesis of only a single regime are thus based on 

the likelihood ratio. Cecchetti, Lam, and Mark (1990) esti-

mate a likelihood-ratio test statistic and uncover evidence 

of multiple regimes but, absent a method to construct criti-

cal values from the asymptotic null distribution, use critical 

values that do not necessarily deliver valid inference. 

 To derive the asymptotic null distribution of the like-

lihood-ratio test statistic, one additional non-standard 

feature must be considered. This feature, emphasized by 

Cho and White (2007), is the presence of three regions in 

the null parameter space. To understand the importance 

of accounting for all three regions, it is helpful to present 

the regime-switching regression (1) in the form of condi-

tional densities. Let   θ   
1
  denote the mean of regime 1, so that 

  θ   
1
 =    θ   

0
  +   δ  . The conditional densities for  Y 

t
   are: 

    

( ) ( )

( ) ( )

2

0 0

2

1 1

1 1
, exp if 0

22

1 1
, exp if 1.

22

θ θ
νπν

θ θ
νπν

⎡ ⎤= − − =⎢ ⎥⎣ ⎦
⎡ ⎤= − − =⎢ ⎥⎣ ⎦

t t t

t t t

f Y Y S

f Y Y S
 

(2)

 

 Under the null hypothesis of only a single regime with 

mean   θ  
*

  , three curves  –  which form the three regions of 

the null space  –  equivalently represent the population 

density  f  ( Y 
t
 ,  θ   

*
 ). The first curve corresponds to  p  

0 
  >  0 and 

 p  
1 
  >  0, so that both regimes are observed with positive prob-

ability, and   θ   
0
 =    θ   

1
 =    θ  

*
  . For the remaining two curves, both 

regimes do not occur with positive probability. One curve 

corresponds to the boundary value  p  
0
 =  0, so that regime 0 

occurs with probability 1, and   θ   
0
 =    θ     

*
 . The remaining curve 

corresponds to the boundary value  p  
1
  = 0 and   θ   

1
 =    θ     

*
 . 

 Ghosh and Sen (1985), who establish the importance 

of accounting for all three curves, note that when the null 

hypothesis is true the maximum of the likelihood will 

eventually be attained in a neighborhood of the union of 

all three curves that represent  f  ( Y 
t
 ,  θ   

*
 ). For this reason, 

attention cannot be confined to the single curve that cor-

responds to   θ   
0
  =   θ   

1
  =   θ  

*
  . Moreover, the curves that corre-

spond to the values  p  
0
  = 0 and  p  

1
  = 0 play an important role 

in empirical analysis. Observe that points in a neighbor-

hood of   θ   
0
  =   θ   

1
  =   θ  

*
   correspond to a process in which there 

are two regimes with slightly separated means that may 

occur with equal frequency. Points in a neighborhood of 

the values  p  
0
  = 0 and  p  

1
  = 0, in contrast, correspond to a 

process in which there are two widely separated regimes, 

one of which occurs infrequently. As false rejection of 

the null hypothesis is often thought to result from the 

misclassification of a small group of extremal values as 

a second regime, it is vital to include boundary values in 

the null parameter space to guard against this type of false 

rejection. The probability of this type of false rejection is 

indeed reduced, as enlarging the null space to include the 

boundary curves leads to an increase in critical values. 

 Cho and White find that when considering the likeli-

hood for a Markov regime-switching process including  p  
0
  = 0 

and  p  
1
  = 0 in the parameter space leads to difficulties in the 

asymptotic analysis of the likelihood ratio statistic. These 

difficulties lead Cho and White to analyze a quasi-likelihood 

ratio (QLR) statistic. In consequence they approximate the 

likelihood with a quasi-likelihood that corresponds to a 

process in which  {  S 
t
   }  is a sequence of i.i.d. random variables 

with  � (S 
t
 =  1) =  π , where the stationary probability  π  equals  p  

0
 /

(  p  
0
  +  p  

1
 ). While the resulting quasi-likelihood ignores certain 
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correlation properties implied by the Markov structure, it 

yields a tractable factorization of the likelihood and avoids 

the difficulties arising from the asymptotic null distribution 

of the score on the boundary of the parameter space. 

 Because   π   = 1 if and only if  p  
1
 =  0 (and  π  = 0 if and only if 

p 
0
 =  0), the null hypothesis for test of one regime against two 

regimes is again expressed with three curves. The null hypoth-

esis is,  H  
0
  :   θ   

0
 =    θ   

1
 =    θ   

*
  (curve 1),  π  = 0 and   θ   

0
  =   θ  

*
   (curve 2),   π   = 1 

and   θ   
1
 =    θ   

*
  (curve 3). The alternative hypo thesis is  H  

1 
 :   π   ∈ (0, 1) 

and   θ   
0 
  ≠   θ   

 1
 . In  Figure 1  we depict the null space together with 

local neighborhoods for two points in this space. The two 

neighborhoods illustrate the role of each curve in the null 

space. Points in the circular neighborhood surrounding the 

point on   θ   
1
 −  θ   

0
 =  0, have slightly separated regimes as they lie 

near   θ   
0
 =    θ   

1
 . Points in the semicircular neighborhood around 

the point on   π   = 1, are infrequently drawn from the distribu-

tion with mean   θ   
0
  as they lie near   π   = 1.  

 The two neighborhoods also illustrate the issues of 

identifiability. Under the alternative hypothesis switching 

occurs between two regimes, but the regimes are identi-

fied only up to labeling  –  as one could re-label (  π ,  θ   
0
 ,   θ   

1
 ) as 

(1 –   π ,  θ   
1
 ,   θ   

0
 ). Ignoring labeling, the parameters (  π ,  θ   

0
 ,   θ   

1
 ) are 

identified under  H  
1
 . Under the null hypothesis the identi-

fication issues are more complex. On the curve   θ   
0
 =    θ   

1
 , the 

parameter   π   is not identified. On the curve   π   = 0,   θ   
1
  is not 

identified and on the curve   π   = 1 the parameter   θ   
0
  is not 

identified. Further, each null distribution can be equiva-

lently represented by a point on each of the three curves. It 

is these identification issues that give rise to the complex 

null distribution that Cho and White derive. 

 While Cho and White (2007) consider all three regions 

of the null space in deriving an asymptotic distribution, 

earlier researchers focused only on the region   θ   
1
 −  θ   

0 
 = 0, 

together with the identifiability condition that   π   ∈ (0, 1). 

As the boundary regions   π   = 1 and   π   = 0 do not appear, the 

likelihood, rather than the quasi-likelihood, is the object of 

analysis. Hansen (1992) obtains a bound on the asymptotic 

 Figure 1      Depicts all three regions of the null hypothesis  

H  
 0 

 :   π   = 0 and   θ   
0
 =    θ   

*
 ;   π   = 1 and   θ   

1
  =   θ   

*
  or   θ   

0  
 =   θ   

 1  
 =   θ   

 *
  together with local 

neighborhoods of   π   = 1 and   θ   
0 
 =   θ   

1 
 =   θ   

 *
 . Note that, in terms of the Markov 

model,   π   = 1 corresponds to  p  
1
 =  0 and   π   = 0 corresponds to  p  

0
 =  0.    

null distribution of a likelihood ratio statistic; this bound is 

a Gaussian process. Garcia (1998) obtains a  χ  2  process as the 

asymptotic null distribution of a likelihood ratio statistic, 

but to do so he requires that the matrix of second deriva-

tives of the likelihood be non-singular when evaluated at 

the null estimates. As he notes (p. 764) this condition does 

not hold for the Markov regime-switching process he con-

siders, which has Gaussian innovations with a regime-var-

ying scale parameter. As we describe in Section 2, the pres-

ence of boundary values, together with a singular matrix of 

second derivatives, results in an asymptotic null distribu-

tion that is a function of a Gaussian process rather than a  χ  2  

process. In more recent work, Carrasco, Hu, and Ploberger 

(2009) study a broader class of models, in which the test of 

regime switching is a special case, but they too rule out the 

boundary regions  π  = 1 and  π  = 0 when deriving the asymp-

totic behavior of their likelihood-ratio based test statistic. 

 We organize the results as follows. In Section 2 we 

detail the class of models that the test is designed for, 

together with the QLR statistic. We also present the asymp-

totic null distribution of the statistic, as derived by Cho and 

White, and detail how a Gaussian process enters the limit 

distribution. In doing so, we highlight the need to calculate 

the covariance between the random variables that enter 

the asymptotic null distribution. In Section 3 we derive the 

covariance structure of the Gaussian process that appears 

in the asymptotic null distribution and detail how to con-

struct the structure for linear models with Gaussian errors. 

Due to the covariance structure of the Gaussian process, the 

critical values cannot be calculated directly so in Section 

4 we show how to numerically approximate the critical 

values. We focus on linear models with Gaussian errors 

and, for a set of standardized distances between regime 

means, we present a table of critical values. Finally, we link 

the simulation discussion to pseudo-code contained in the 

Appendix (and reference programs in Matlab, R and Stata) 

so that researchers are able to construct critical values for 

other sets of standardized distances.  

2    A QLR Test for Regime Switching 
 The class of Markov regime-switching processes for which 

Cho and White (2007) establish consistency of a QLR test 

includes far more than the structure analyzed by Cec-

chetti, Lam, and Mark (1990). In this section we provide 

leading examples of allowable processes together with 

the asymptotic null distribution of the QLR statistic, defer-

ring the formal conditions under which the distribution 

is derived to the Appendix. The process (1) can be aug-

mented with covariates  Z 
t
  , 
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28      Carter and Steigerwald: Markov Regime-Switching Tests

 We investigate the behavior of the distribution of  QLR  
n
  

in a neighborhood of the null region corresponding to 

  π   = 1, for which the alternative hypothesis is   π    <  1. Observe 

that, although   π   is a probability, it is possible that   ˆ 1.π>  

Thus   π̂  should be subject to a boundary condition. 

 At first we ignore the boundary condition on   ˆ .π  If 

we fix   θ   
0
  at   0 ,θ′  the regularity conditions imply that the 

asymptotic null distribution of  QLR  
n
  is  χ  2 , with one degree-

of-freedom. As the value   0θ′  is arbitrary, the distribution of 

 QLR  
n
  depends on the stochastic process formed from the 

sequence of  χ  2  random variables, each indexed by a par-

ticular value of   θ   
0
 . Moreover, the elements of the  χ  2  process 

are dependent upon each other. The dependence arises in 

the following way. For a fixed value   0 ,θ′  the maximum of 

the likelihood is   ( ) ( ) ( )0 0 0 1 0
ˆˆ ˆ, , , .nL π θ γ θ θ θ θ⎡ ⎤′ ′ ′ ′⎣ ⎦  If we fix the 

value at   0 ,θ′′  then the estimates that maximize the likeli-

hood are   ( ) ( ) ( )0 0 1 0
ˆˆ ˆ, , .π θ γ θ θ θ⎡ ⎤′′ ′′ ′′⎣ ⎦  Because these two sets of 

estimates of (  π ,  γ ,  θ   
1
 ) (at both   0θ′  and   0θ′′ ) are calculated 

from the same sample, the corresponding sequences 

  ( )2

0χ θ′  and   ( )2

0χ θ′′  are dependent. 

 When we impose the boundary condition on   ˆ ,π  the 

asymptotic null distribution of  QLR  
n
  is no longer a  χ  2  

process. 2      To see this, note first that the boundary condi-

tion  π    ≤   1 implies that if   ˆ 1,π>  then the estimate of   π   is 

truncated back to   ˆ 1π=  and  QLR  
n
  = 0. The event that   ˆ 1π>  is 

closely tied to the asymptotic null distribution for  QLR  
n
 . If 

  θ   
0
  is fixed at   0 ,θ′  then the asymptotic null distribution of 

 QLR  
n
  that occurs in the absence of the boundary condition 

can be expressed as   ( )2

0 ,θ′G  where   ( )0 ( 0,1),Nθ ∼′G  and the 

estimator   π̂  is asymptotically equal to   ( )01 ,c θ+ ′G  where  c  

is a positive constant. In consequence, if   ( )0 0θ >′G  then 

  ˆ 1π> . Thus, when the boundary condition is imposed the 

asymptotic null distribution of  QLR 
n
   has point mass at 0 

and the remainder of the null distribution is governed by 

the negative part of the Gaussian process, G  (  θ   
0
 ). 

 Let  Θ  define the set of possible values of   θ   
0
 . The proce-

dure of first maximizing  L 
n
   for a fixed value of   θ   

0
  and then 

obtaining the supremum over  Θ , yields the asymptotic 

null distribution (Cho and White 2007, Theorem 6(a), 1692) 

    ( )( )2

0
sup min 0, _ .nQLR

Θ
⎡ ⎤⇒ ⎣ ⎦θG  (6) 

 The critical value corresponds to a quantile for the 

largest value, over  Θ , of [ G  (  θ   
0
 ) − ] 2 , where G  (  θ   

0
 )_ : = min[0,

 G  (  θ   
0
 )]. As we show below for Gaussian error densities, 

    0 .'

t t t tY S Z Uθ δ β= + + +  (3) 

 There are two further generalizations of (3) that 

broaden the scope of application. First, the error density 

may be any element from the exponential family. Second, 

the dependent variable can be vector valued, although 

the difference between distributions in the mixture model 

must be in only one mean parameter. One example of 

such a system of equations is the structural model 

      

1 0 12 2 1 1 1

2 21 1 2 2 2 .

t t t t t

t t t t

Y S Y Z U

Y Y Z U

θ δ α β

μ α β

= + + + +′

= + + +′  
(4)

 

 For any of the allowable processes, let the conditional 

densities be  f  ( Y 
t
   |  Z t ;  γ ,  θ  

j
  ) with  j =  0, 1 where   ( )1, ,t

tZ Z Z= ′ ′…  

and   γ   includes other parameters of the conditional density 

[e.g.  γ  = ( ν ,   β   ′ )]. The quasi-log-likelihood analyzed by Cho 

and White, which ignores the Markov structure and treats 

 {  S 
t
   }  as i.i.d. with  � ( S 

t
 =   1) =   π  , is 

   
( ) ( )0 1 0 1

1

1
, , , , , , ,

n

n t

t

L l
n

π γ θ θ π γ θ θ
=

= ∑
 

 where  l 
t
  (  π ,  γ ,  θ   

0
 ,   θ   

1
 ): = log[(1−  π )f  ( Y 

t
   |  Z t ;  γ ,  θ   

0
 ) +   π f ( Y 

t
   |  Z t ;  γ ,  θ   

1
 )]. 

The use of this quasi-log-likelihood to form the quasi-

maximum likelihood estimator (QMLE) leads to an impor-

tant restriction on (3). Carter and Steigerwald (2012) 

establish that the QMLE is inconsistent in the presence 

of Markov switching if  Z 
t
   includes lagged values of  Y 

t
  . For 

this reason, the processes under study do not include 

autoregressions. 1      

 To describe the asymptotic null distribution of the 

QLR statistic, we first note that the null distribution is 

largely determined by the behavior of the statistic in a 

neighborhood of the null region   π   = 1. The asymptotic null 

distribution is complicated by the fact that   θ   
0
  is not identi-

fied if   π   = 1, so changes in the value of   θ   
0
  do not alter the 

asymptotic null distribution. This stands in contrast to the 

identified parameters   θ   
1
  and   γ  , for which changes in their 

value do alter the asymptotic null distribution of the QLR 

statistic. In consequence, if   π̂  is close to 1 we expect   1θ̂  

and   γ̂  to be close to their population values, while there is 

no population value that   0θ̂  should be close to. 

 Define   ( )0 1
ˆ ˆˆ ˆ, , ,π γ θ θ  as parameter values that maxi-

mize the  L  
n
  function. Let   ( )11, , ,γ θ⋅ ��  be parameter values 

that make  L  
n
  as large as possible over the null hypothesis 

that   π   = 1. The QLR statistic is 

       ( ) ( )0 1 1
ˆ ˆˆˆ2 , , , 1, , , .n n nQLR n L L⎡ ⎤= − ⋅⎣ ⎦

��π γ θ θ γ θ  (5) 

  1  As Carter and Steigerwald (2012) note, inconsistency of a QMLE 

does not necessarily imply inconsistency of a QLR test. 

  2  This is similar to the behavior of a one-sided likelihood ratio test 

(van der Vaart 1998, p. 235). 
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the sign of G  (  θ   
0
 ) switches at the origin, so the quantile 

exceeds 0 with probability 1 if  Θ  contains both positive 

and negative values. 

 One important wrinkle still remains. While (6) pro-

vides the asymptotic null distribution for many experi-

ments, it does not provide the full distribution for all 

Gaussian experiments. If  U 
t 
   ∼   i.i.d.N (0,   ν  ) the asymptotic 

null distribution of  QLR 
n
   is not determined solely by the 

behavior in a neighborhood of   π   = 1. If   θ   
0
  is sufficiently 

close to   θ   
1
  and   1

2
,π=  then the asymptotic null distribu-

tion has an additional term [Cho and White 2007, theorem 

6(a), 1692] 

       
( ) ( )

2 2

0
supmax max 0, , .nQLR G θ

−Θ

⎡ ⎤⎡ ⎤ ⎡ ⎤⇒ ⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦
G

 
(7)

 

 Here  G  is a standard Gaussian random variable that is cor-

related withG (  θ   
0
 ). 

 The critical value for a test based on  QLR 
n
   corre-

sponds to a quantile for the largest value over max(0,  G ) 2  

and   ( ) 2

0
sup θΘ −

⎡ ⎤⎣ ⎦G . To determine this quantity one must 

account for the covariance among the elements of  G  (  θ   
0
 ) 

together with their covariance with  G . Because the covari-

ance among the elements ofG ( θ  
0
 ) depends on the assumed 

process for  Y 
t
  , we show how to analytically calculate this 

covariance in the next section.  

3    Gaussian Process Covariance 
 The first step in obtaining critical values from the asymp-

totic null distribution is to analytically derive the covari-

ance function ofG (  θ   
0
 ). To do so, we first present the 

Gaussian process,G (  θ   
0
 ), as a normalized score function, 

together with the expression for the covariance of the 

process across the values of   θ   
0
 . The subsections contain 

the explicit calculations of this covariance for the models 

(3) and (4). 

 Because the Gaussian processG (  θ   
0
 ) arises from the 

behavior of  QLR 
n
   in a neighborhood of the null region   π   = 1, 

the component of the gradient that determinesG (  θ   
0
 ) is the 

score for   π   evaluated at (1,   γ ,  θ   
0
 ,   θ   

*
 ) (which are the popula-

tion values under the null hypothesis that   π   = 1) 

   
( )

( )0

0

1, , , *

.tl
γ θ θ

θ
π

∂=
∂

S

 

 Because S  (  θ   
0
 )  ∼   N [0,V  (  θ   

0
 )], the standardized pro-

cessG (  θ   
0
 ) is a scaled score function 

   ( ) ( ) ( )
1

2
0 0 0 .θ θ θ

−=G V S  

 The asymptotic variance of S  (  θ   
0
 ) is 

 V  (  θ   
0
 ) =  I   11 (  θ   

0
 ), 

 where  I    11  (  θ   
0
 ) is the (1, 1) element of  I  (  θ   

0
 ) −1  and 

   ( ) ( )( ) ( )( )1 10 , , 0 , , 0= .
T

t tl lπ γ θ π γ θθ θ θ⎡ ⎤∇ ∇⎢ ⎥⎣ ⎦
I E

 

 Here   , , 1 tlπ γ θ∇  denotes the gradient with respect to   π ,  γ 
  and   θ   

1
  evaluated at (  π ,  γ ,  θ   

0
 ,   θ   

1
 ) = (1,  γ ,   θ   

0
 ,   θ   

*
 ).  3     From the par-

titioned inverse formula (Theil 1971, 18), V  (  θ   
0
 ) is 

 V  (  θ   
0
 ) = ( I  

11 
 (  θ   

0
 )   –   I  

1 
 (  θ   

0
 )[ I  

2
  (  θ   

0
 )] −1   I  

1 
 (  θ   

0
 )  T  ) −1 , 

 where   
11 1

1 2

T

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦

I I
I

I I
. 

 Because the processG ( ‧ ) is a Gaussian process, the 

dependence among the elements ofG ( ‧ ) is captured by the 

covariance among the elements ofG ( ‧ ). If we let   θ   
0
  and   0θ′  

denote two distinct elements of the processG ( ‧ ), then the 

covariance   ( ) ( )0 0θ θ⎡ ⎤′⎣ ⎦E G G  is derived from the covariance 

  ( ) ( )0 0θ θ⎡ ⎤′⎣ ⎦E S S  as 

   ( ) ( ) ( ) ( ) ( ) ( )
1 1

2 2
0 0 0 0 0 0= .θ θ θ θ θ θ

− −⎡ ⎤ ⎡ ⎤′ ′ ′⎣ ⎦ ⎣ ⎦E EG G V V S S  (8) 

 The covariance   ( ) ( )0 0θ θ⎡ ⎤′⎣ ⎦E S S  is the (1, 1) element of 

   ( ) ( ) ( )1 1

0 0 0 0, .θ θ θ θ
− −′ ′I I I  

 The matrix   ( )0 0,θ θ′I  is obtained by evaluating the 

gradient at distinct points: ( ) ( )( )0 0 , , 01
, tlπ γ θθ θ θ⎡= ∇′ ⎣I E  

  ( )( ), , 01

T

tlπ γ θ θ ⎤∇ ′ ⎥⎦ . We next show how to calculate these 

quantities for each class of data generating processes. 

3.1    Single Equation Linear Model 

 For the single equation linear model (3) with  U 
t
    ∼   i.i.d.N (0,   ν  ), 

which excludes lagged values of  Y 
t
   as covariates, we show 

that   ( ) ( )0 0θ θ⎡ ⎤′⎣ ⎦E G G  does not depend on  Z 
t
  . Thus whether 

one has an extensive set of covariates, or none as in Cec-

chetti, Lam, and Mark (1990) (1), the following calculation 

is all that is needed. For this model 

   
( ) ( )0 0

0
* *1 exp .

2
t tY Z

θ θ θ θ
θ β

ν

⎡ ⎤− +⎛ ⎞= − − −′⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
S

 

  3  The element of the gradient corresponding to   θ   
0
  is identically zero 

when evaluated at   π   = 1 and so is deleted from the vector that forms 

I (  θ   
0
 ) (Cho and White 2007, assumption A.6, 1678). 
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 From the derivative calculations in the Appendix the 

asymptotic variance of S  ( θ  
0
 ) is 

   
( ) ( ) ( ) ( )0

12 41 2
0 0*

0 2
* *1 .

2
e

θ θ
ν

θ θ θ θ
θ

ν ν

−
−⎛ ⎞− −

= − − −⎜ ⎟
⎝ ⎠

V
 

 To obtain the largest value of [ G  (  θ   
0
 ) − ] 2  over  Θ , we 

must also know the covariance ofG (  θ   
0
 ), which depends 

on the covariance of S  (  θ   
0
 ). The covariance of the score, 

  ( ) ( )0 0 ,θ θ⎡ ⎤′⎣ ⎦E S S  in turn requires 

   

( )

( )( ) ( ) [ ]
( )

[ ] [ ] [ ]

[ ]

0 00

21
0* * 0 0

2

2

0

2 2

0 0

0

0

* * *1
2

1* 0 0
2 2, ,

1 1* 0

1 1* 0

t

t t t t

t

e Z

Z Z Z Z

Z

θ θ θ θ
ν

θ θ θ θ θ θ

ν ν ν
θ θ

ν νθ θ
θ θ

ν ν ν
θ θ

ν ν ν

− −′⎡ ⎤−′ − −′ ′− − ′⎢ ⎥
⎢ ⎥
⎢ ⎥−

−⎢ ⎥
=′ ⎢ ⎥

−′⎢ ⎥′ ′⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

I

E

E E E

E
 

 so   ( ) ( ) ( )0 0

1
* *

11 0 0, 1e
θ θ θ θ

νθ θ
− −′

= −′I . Then   ( ) ( )0 0θ θ⎡ ⎤′⎣ ⎦E S S  

equals   ( ) ( )0 0θ θ′V V  times the following term 

   

( ) ( ) ( )( ) ( ) ( )0 0

2 21
0 0 0 0*

2
* * * *1 .

2
e

θ θ θ θ
ν

θ θ θ θ θ θ θ θ

ν ν

− −′∗ − − − −′ ′
− − −

 

 Because neither   ( ) ( )0 0θ θ⎡ ⎤′⎣ ⎦E S S  nor V  ( ‧ ) is a 

function of  Z 
t
  , the covariance of the Gaussian process, 

  ( ) ( )0 0θ θ⎡ ⎤′⎣ ⎦E G G  given by (8), is independent of the covari-

ates that enter the model. Hence the calculations we detail 

here provide the covariance of the Gaussian process for all 

models of the form of (3). 

 Next observe that the regime-specific parameters 

  θ   
0
  and   θ  

*
   enter   ( ) ( )0 0θ θ⎡ ⎤′⎣ ⎦E S S  and   ( )⋅V  only through 

  0 * .
θ θ

η
ν

−
=  Hence the covariance of the Gaussian process 

is given by 

  

  

( ) ( )
( )

( ) ( ) ( )

2

10 0 1
44 22 22 22

1
2 ,

1 1
2 2

e

e e

ηη

ηη

ηη
ηη

θ θ
ηη

η η

′

′

′
− − −′

⎡ ⎤=′⎣ ⎦
⎛ ⎞′⎛ ⎞− − − − − ′ −⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

E G G

 (9) 

 where   0 * .
θ θ

η
ν

−′=′  The quantity sup 
 Θ 

 [ G  (  θ   
0
 ) − ] 2  that appears 

in the asymptotic null distribution is determined by the 

covariance   ( ) ( )0 0 .θ θ⎡ ⎤′⎣ ⎦E G G  Because the regime-specific 

parameters enter (9) only through   η  , a researcher need 

only specify the set that contains   η  . That is, to calculate 

sup 
 Θ 

 [ G  (  θ   
0
 ) − ] 2  a researcher does not need to specify the 

parameter space  Θ  that contains the regime-specific 

intercepts, but need only specify the set  H  that contains 

the number of standard deviations that separate the 

regime means.  

3.2    Simultaneous Equations Linear Model 

 For the simultaneous equations linear model (4), let 

( U 
t
   
1
 ,  U 

t
   
2
 ) be multivariate Gaussian random variables with 

zero mean,  var ( U 
ti
  ) =   ν   

i
  and Cov( U 

t
   
1
 ,  U 

t
   
2
 ) =   ν   

12
 . The (canoni-

cal) reduced form of the multivariate random variable 

 Y 
t
   
 
 : = ( Y 

t
   
1
 ,  Y 

t
   
2
 )  ′   is 

   

0 11 11 1 1 1

22 2

,
0

tt

t t
tt

UZ
Y A A S A A

UZ
− − − −

′⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

0
0

θ δ β
μ β  

 where   
12

21

1

1
A

−⎛ ⎞
=⎜ ⎟−⎝ ⎠

α
α . As we detail in the Appendix, the 

covariance of the Gaussian process takes the form 

   
( ) ( ) ( ) ( ) ( ) ( )

1 1
2

2 2
0 0

1
exp 1 ,

2
θ θ η η ηη ηη ηη

− − ⎡ ⎤⎡ ⎤= − − −′ ′ ′ ′ ′⎣ ⎦ ⎢ ⎥⎣ ⎦
E G G V V

 

 with   
( )

0

2

1

*

1

θ θ
η

ν ρ

−
=

−
 and   ρ   =  Corr ( U 

t
   
1
 ,  U 

t
   
2
 ). We see that the 

standardized distance between regimes is altered in a 

natural way, as   ν   
1
 (1−  ρ  2  ) is the variance of  Y  

1
   
t
   conditional 

on  Y  
2
   
t
  , and that the form of the covariance function is 

identical to that of the single equation model. Moreover, 

the index of the standardized distance between regimes 

does not depend on  A , so that the same calculations apply 

to a triangular system (  α   
21

 =  0) and to a system of seem-

ingly unrelated equations (  α   
12
 =    α   

21
 =  0). As in the case of the 

single equation model, calculation of the critical values 

only requires specification of the interval  H  that contains 

the standardized distance between regimes.   

4    Quantile Simulation 
 The second step in obtaining a critical value is to con-

struct the appropriate quantile from the asymptotic null 

distribution. For a QLR test with size 5%, the critical value 

corresponds to the 0.95 quantile of the limit distribution 

given on the right side of either (6) or (7). Because the 

dependence in the processG (  θ   
0
 ) renders numeric inte-

gration infeasible, we construct the quantile by simulat-

ing independent replications of a process. For the linear 

model with Gaussian errors, as the covariance ofG (  θ   
0
 ) 

depends only on an index   η  , whileG  itself depends on 

( v,   β ,  θ   
0
 ,   θ  

*
  ) through the score S  (  θ   

0
 ), we do not simu-

lateG (  θ   
0
 ) directly. Instead we simulate  G    A  (  η  ), which has 
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the same covariance structure asG (  θ   
0
 ) and so delivers the 

same quantile, but which depends only on the index. 

 To constructG  A (  η  ) for the covariance structure in (9) 

recall that, by a Taylor-series expansion,   
2

1 .
2!

eη η
η= + + +�

Hence, for   { } ( )
0

. . . 0,1 :j j
i i d Nε

∞

=
∼  

   

4
2 2

3

0, 1 ,
! 2

j

j

j

N e
j

ηη η
ε η

∞

=

⎛ ⎞− − −⎜ ⎟⎝ ⎠∑ ∼
 

 so   ( )
1

2
0 3 !

j

jj j

η
θ ε

∞

=∑V  has the same covariance structure 

as S  (  θ   
0
 ). The simulated process is 

   
( )

1
4 122 2

=3

1 ,
2 !

jJ
A

j

j

e
j

η η η
η η ε

− −⎛ ⎞= − − −⎜ ⎟⎝ ⎠ ∑G
 

 where  J  determines the accuracy of the Taylor-series 

approximation. To capture the behavior of the limit dis-

tribution in (7), we must also account for the covariance 

between  G  and  G  (  θ   
0
 ). As this covariance is a function of 

  η   4 , whose corresponding value is   ε   
4
  in the expression for 

 G    A  (  η  ), we set  G =   ε  
4
  so that Cov( G ,  G  (  θ   

0
 )) = Cov( G,   G    A  (  η  )). 4  

 For each replication, we calculate  G   A (  η  ) at a fine grid of 

values over  H . To do so, we must specify three quantities: 

the interval  H , the grid of values over  H  (given by the grid 

mesh) and the number of terms in the Taylor-series approx-

imation,  J . To understand the interplay in specifying these 

three quantities, suppose that   θ   
0
  is thought to lie within 3 

standard deviations of   θ   
1
 . The interval is  H  = [−3.0, 3.0] and, 

with a grid mesh of 0.01, the process is calculated at the 

points (−3.00, −2.99, … ,3.00). Because the process is calcu-

lated at only a finite number of values, while the maximum 

that appears in the limit distribution is obtained over a con-

tinuum of values, the accuracy of the calculated maximum 

increases as the grid mesh shrinks. For this reason we rec-

ommend a grid mesh of 0.01 (as do Cho and White, 1693). 

 To determine the value of  J , let 

  

1
4 22 2

, 1
2 !

j

J jj J
e

j

η
η

η η
ξ η ε

−
∞

=

⎛ ⎞= − − −⎜ ⎟⎝ ⎠ ∑  be the approximation 

error. Because  {  ε   
j
   }  is a mean zero process, it is the variance 

of   ξ  
J,
  
 η 
   that provides information about the magnitude of the 

approximation error. When   η    >  0, 
  ( )

1
*

1
1 ! !

J J

e e
J J

η ηη η−

= + + +
−

�
 

for some 0  <    η   *   <    η  . The variance of   ξ  
J,
  
 η 
   is then bounded by 

  

14 2
2 221

2 !

J

e e
J

η ηη η
η

−
⎛ ⎞− − −⎜ ⎟⎝ ⎠

so, by Stirling ’ s formula, 

   

( ),

14
2 22

1
log var 2 log log log 2

2

log 1 .
2

J J J J J

e e

η

η η

ξ η π

η
η

−

⎛ ⎞≤ ⋅ − + + −⎝ ⎠

⎡ ⎤⎛ ⎞+ − − −⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦  

 For large  J , var(  ξ  
J,η

  ) is governed by 

 var(  ξ  
J,η

  )   ≤   e 2   J    log     η    ‒   J    log    J  , 

 so   
2

1
J

η <<  to ensure that the variance of   ξ  
J,
  
 η 
   declines 

rapidly to 0 as  J  grows. The value of  J  is then determined 

such that (max  
H
    |   η   | ) 2   <    <   J . In practice, we recommend that 

(max  
H
    |   η   | ) 2 / J    ≤   1/2. 5  

 The critical value that corresponds to (7) for a test size 

of 5% is the 0.95 quantile of the simulated value 

   ( ) ( )( ){ }2 2

4max max 0, , min 0, .max A

Hη
ε η

∈
⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦G  

 In  Table 1 , we present the critical value for specified 

intervals, which correspond to regime separation of 1 to 5 

standard deviations. For these calculations we set  J  = 150, 

use a grid mesh of 0.01 and perform 100,000 replications. 

We find that fewer than 100,000 replications did not 

produce stable critical values, so we compare our critical 

values with those reported by Cho and White for 10,000 

replications. As researchers may need critical values for 

other specified intervals, we present pseudo-code for 

the simulation in the Appendix. In addition, simulation 

programs in Matlab, R and Stata are available from the 

authors.  

 To understand how to employ these critical values, 

we return to the study by Cecchetti, Lam, and Mark. If we 

assume that the mean growth rate of annual, per capita 

GNP differs by no more than 5 standard deviations between 

expansions and contractions, then 7.03 is the critical value 

for a test with size 5%. (The estimated means differ by 

 Table 1      Critical values for linear models with Gaussian errors.  

    H   [−1, 1]  [−2, 2]  [−3, 3]  [−4, 4]  [−5, 5]  [−10,10] 

 Replications  100,000  5.03  5.54  6.18  6.67  7.03  8.31 

   10,000  5.01  5.61  6.35  6.54  7.06   

 Nominal level 5%;  J  = 150; grid mesh of 0.01; 100,000 replications; 

critical values corresponding to 10,000 replications are from Cho 

and White (2007) Table I, p. 1694. 

  4  Cho and White (2007, 1693) show ( )( )0Cov ,G θG  

2

1
4 2

2 41 .
2

eη η
η η

−
⎛ ⎞= − − −⎜ ⎟⎝ ⎠

   5  Cho and White select J=150 and consider a maximal value of 

η=5, so η2/J≤1/6. 
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slightly less than 4 standard deviations.) As the estimated 

value of the test statistic is 28, the null hypothesis of only a 

single regime is clearly rejected for their analysis.  

5    Remarks 
 The asymptotic null distribution that Cho and White estab-

lish provides valid inference for a test of more than one 

regime. The distribution depends both on the structure of 

the model and on the parameter space that contains the 

regime-specific intercepts. We show that for the class of 

linear models with Gaussian errors the dependence of the 

asymptotic null distribution on the parameter space and 

model structure is simplified. First, the regime-specific inter-

cepts enter through an index that captures the standardized 

distance between regimes. Second, the presence of covari-

ates does not affect the critical values. Together, these two 

points imply that the tabulated critical values we present 

deliver valid inference for all models within the class. 

 A question naturally arises: Can the QLR test we study 

be used for a wider class of alternative hypotheses? The 

answer is yes if the null hypothesis is unchanged and if 

the test is based on the statistic  QLR 
n
   defined in (5). In this 

case, the QLR test we study can also be used to test for the 

following classes of alternatives: models in which not only 

the intercept but also the slope coefficients change over 

regimes; models in which the error variance changes over 

regimes; and models in which there are more than two 

regimes. To understand why, note that models within this 

broader class are identical to the model we study under 

the null hypothesis. Thus the asymptotic null distribution 

presented in this paper remains valid. Of course, because 

we allow only the intercept to shift when estimating the 

alternative model that enters QLR  
n
  , and so maximize the 

quasi-likelihood over a shift to the intercept and not over 

the general parameter space, the test would have limited 

power against alternatives that result in little change to 

the intercept. The requirement that only the intercept can 

shift does have advantages. For the class of alternatives 

with regime-switching variances, our restriction that the 

variance is constant across regimes under the alternative 

avoids the difficulty that a likelihood with regime-switch-

ing variances can be maximized by assigning a single 

observation to one of the regimes. 

 To obtain valid inference with the critical values in 

Table 1, a researcher must, prior to estimation, specify a set 

of values that contains the standardized distance between 

regimes. The specified set takes the form of an interval [− c, 

c ] in which the index   η   must lie, so the estimate   η̂  must also 

lie in the interval. If the population value of   η   lies outside the 

selected interval, then the estimated value of   η   will be con-

strained to lie on the boundary of the selected interval, which 

in turn leads to an increased estimate of the variance  v . The 

resultant upwardly biased estimate of  v  reduces the power of 

the test to detect multiple regimes. To avoid the issues that 

arise when the estimate of   η   is constrained, a researcher can 

select a large value of  c . Yet, as the critical value rises monot-

onically with  c , a large selected interval also leads to a loss of 

power. This raises an interesting question: Can an alternative 

method be used to obtain asymptotically valid critical values 

for the QLR test of regime switching?   
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6      Appendix

6.1     Formal Conditions  

We present the assumptions that define a class of pro-

cesses to which the asymptotic theory presented in Section 

2 applies. The two assumptions presented here combine 

A1–A2(i) from Cho and White with A2(ii) from Carter and 

Steigerwald (2012) 

  Assumption 1  

1.     The observable random variables   ( ){ }
1

, ,
n

d

t t
t

Y Z
=

′ ∈′ ′ R  

d ∈  N , are generated as a sequence of strictly stationary 

 β -mixing random variables such that for some  c   >  0 

and    ρ   ∈ [0, 1) the beta-mixing coefficient,  g 
 τ 
  , is at most 

 c ρ   τ   .  

2.    The sequence of unobserved state variables that 

indicate regimes,   { }{ }
=1

0,1
n

t t
S ∈ , is generated as a first-

order Markov process such that  � ( S 
t
   = 1 |  S 

t
   − 1

 = 0) =  p  
0
  and 

 � ( S 
t
   = 0 |  S 

t
   − 1

 = 1) =  p  
1
  with  p 

i
    ∈  [0, 1] ( i  = 0, 1).  

3.    The given   ( ){ },t tY Z ′′ ′  = is a Markov regime-switching 

process. That is, for some   ( ) 20
0 1, ,

rγ θ θ +∈R ,  

     

( )
( )

0

1

1

| ; , if 0
| ,

| ; , if 1

t

t

t t t

t

F Z S
Y

F Z S

γ θ

γ θ
−

⎧ ⋅ =⎪∼⎨
⋅ =⎪⎩

F

  

    where  F   
t
   
 − 1

 : =   σ  ( Y  t − 1 ,  Z t , S t  ) is the smallest  σ -algebra gene-

rated by   ( ) ( )1

1 1 1 1, , : , , , , , , , , ;t t t

t t tY Z S Y Y Z Z S S−
−= ′ ′ ′ ′… … …  

 r  
0
   ∈   � ; and the conditional cumulative distribution 

function of  Y 
t
   |  F  , F  ( ·  |  Z t  ;  γ ,  θ   

j
 )  has a probability density 
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function f (· |  Z t  ;  γ ,  θ   
j
  ) (  j  = 0, 1). Further, for (  p  

0
 ,  p  

1
 )  ∈  

(0, 1]  ×  (0, 1]\ { (1, 1) } , ( γ ,   θ   
0
 ,   θ   

1
 ) is unique in   

20 .
r +R    

 The vector  γ  captures all parameters of  F  ( · ), including 

the scale parameter, that do not vary across regimes. The 

point  p  
0
  =  p  

1
  = 1 is excluded from the parameter space to rule 

out a deterministically periodic process for  {  S 
t
   } , which 

would imply that  {  Y 
t
   }  is not strictly stationary. 

 The model for the data generating process specifies a 

compact parameter space. 

  Assumption 2  

1.     A model for  f  ( ·  |  Z t  ;  γ ,  θ   
j
  ) is   ( ) ( ){ }| ; , : , ,t

j jf Z γ θ γ θ Θ⋅ ∈ �

where  
 

10:=
rΘ Γ Θ +× ∈� R , and  Γ  and  Θ  are compact 

convex sets in   0rR  and  R  respectively. Further, for each 

( γ ,  θ   
j
  )  ∈    Θ� ,  f  ( ·  |  Z t  ;  γ ,  θ   

j
  ) is a measurable probability 

density function, where the support of  f  ( ·  |  Z t  ;  γ ,  θ   
j
  ) is the 

same for all   Θ� , with cumulative distribution function 

 F  ( ·  |  Z t  ;  γ ,  θ   
j
  ) (  j  = 0, 1).  

2.    The covariates are exogenous in the sense that  �  

( S 
t
   =  j  |  F  

t − 1
 ) is independent of  Z t   for (  j  = 0, 1).   

 Additional conditions that imply a uniform bound on the 

first eight partial derivatives of the quasi-log- likelihood 

and an invertible information matrix are needed to 

establish (7) [see Cho and White 2007, Theorem 6(b) and 

Assumptions A.3, A.4, A.5 (ii), (iii), A.6 (iv)]. These condi-

tions are satisfied for a Gaussian density.    

6.2  Gaussian Process Covariance

6.2.1     Single Equation – Derivative Calculations 

 For the process given by (3) with  U 
t
    ∼   i.i.d.N ( 0,  ν ), the 

quasi-log-likelihood for observation  t, l 
t
  , equals 

   

( ) ( ) ( )

( ) ( )

2 2

0 0 1 1

2

2 2
log 1 exp exp

2 2

1 1
log ,

2 2

t t t t

t t

Y Z Y Z

c Y Z

θ β θ θ β θ
π π

ν ν

ν β
ν

⎡ ⎤⎛ ⎞ ⎛ ⎞− − − −′ ′
− +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

− − − ′
 

 where  c  = 2  ·   pi  (where  pi  = 3.14  … ). 

 The gradient of  l 
t
   evaluated at (1,  γ ,  θ  

0
 ,  θ  

*
 ) contains 

   
1 ,

bt
tl e

π

∂ = −
∂  

 where 
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β
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. The remaining 

elements of the gradient are 
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 We analyze the behavior of   
bte  in detail, as this forms 

the heart of the calculations for  I  ( θ  
0
 ) =  I  ( θ  

0
 ,  θ  

0
 ). Further 

detail, covering the remaining calculations, can be found 

in Carter and Steigerwald (2011). 

 To determine the behavior of   ,
bte  first note that because 

  ( ) ( )~ ,*t tY Z Nβ θ ν− ′  the definition of a moment generat-

ing function yields   ( )( ) 21
exp exp * 2

t tY Z s s sβ θ ν⎛ ⎞⎡ ⎤− = +′⎣ ⎦ ⎝ ⎠E  

for any real number  s . Let   0 *s
θ θ

ν

−
= , so 
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 In similar fashion,   ( )
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 We also need to calculate   ( )bt
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 For the second quantity, 
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 With these calculations in hand, the elements of the 

first row of  I  ( θ  
0
 ) are 

 (1, 1)    
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1 2 1
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 (1, 4)  
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6.2.2    Simultaneous Equations – Covariance 
Calculations

  From the reduced form, the coefficient on the state vari-

able,  S 
t
  , is d =  δ  A   − 1  (1 0) T  and the covariance matrix of the 

errors is  Ω   − 1  =  A   − 1  Σ ( A   − 1 ) T  with   
1 12

12 2

.
ν ν

Σ ν ν
⎛ ⎞

=⎜ ⎟⎝ ⎠
 As detailed in 

Carter and Steigerwald (2011), the covariance of the 

 Gaussian process is 
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 where 
  

( ) ( ) ( )2T T T

1 1 1 1 1 1 1

1
exp 1

2
d d d d d d dΩ Ω Ω= − − −V . 6      The 

quantity   T

1 2d dΩ  simplifies as 
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6.3   Pseudo-Code  

Prior to the first iteration, the researcher must select the set 

 H  that contains  η , the resolution of the grid of values in  H  (we 

recommend 0.001) and the number of normal random vari-

ables,  J , used to approximate the Gaussian process covari-

ance. (We detail how to select  J  on page 12. For many appli-

cations  J  = 150 is sufficient.) For each of  r  = 1, … , R  iterations: 

1.     Generate   { } ( )
0

. . . 0, 1
J

j j
i i d Nε

=
∼

  
2.    For each value of  η  in the grid mesh, construct  

     

( )
1

4 122 2

=3

1
2 !

jJ
A

j

j

e
j

η η η
η η ε

− −⎛ ⎞= − − −⎜ ⎟⎝ ⎠ ∑G

  

   (the equation for  G    A (  η ) appears at the top of page 12)  

3.    Obtain  m 
r
   = max  { [max (0,  ε  

4
 )] 2 , max 

 η 
  [min (0,  G   A  ( η ))] 2  }  

[use of  ε  
4
  is described at the top of page 11; the formula 

for  m 
r
   corresponds to the right side of (7)]   

 This yields   { }
=1

R

r r
m . Let   ( ){ }

=1

R

r r
m  be the ordered values 

from which the critical value for a test with size 5% is 

 m  
[.95

   
R
   
]
 .    

  References 
  Carrasco, M., L. Hu, and W. Ploberger. 2009.  Optimal Test for Markov 

Switching Parameters . Economics department discussion 

papers, University of Leeds.  

  Carter, A., and D. Steigerwald. 2011.  Technical Note to Accompany 
Markov Regime-Switching Tests: Asymptotic Critical Values . 

Economics department discussion papers, UC Santa 

Barbara,  

  Carter, A., and D. Steigerwald. 2012. “Testing for Regime Switching: 

A Comment.” Econometrica 80 (4): 1809–1812.  

  Cecchetti, S., P. Lam, and N. Mark. 1990.  “ Mean Reversion in 

Equilibrium Asset Prices. ”   American Economic Review  80: 

398 – 418.  

  Cho, J. S., and H. White. 2007.  “ Testing for Regime Switching. ”  

 Econometrica  75 (6): 1671 – 1720.  

  Garcia, R. 1998.  “ Asymptotic Null Distribution of the Likelihood 

Ratio Test in Markov Switching Models. ”   International 
Economic Review  39: 763 – 788.  

  Ghosh, J., and P. Sen. 1985.  “ On the Asymptotic Performance of 

the Log Likelihood Ratio Statistic for the Mixture Model and 

Related Results. ”  In  Proceedings of the Berkeley Conference in 
Honor of Jerzy Neyman and Jack Kiefer , edited by L. Le Cam and 

R. Olshen, vol. 2, 789 – 806. Belmont: Wadsworth Press.  

  Hansen, B. 1992.  “ The Likelihood Ratio Statistic Under Nonstandard 

Conditions: Testing the Markov-Switching Model of GNP. ”  

 Journal of Applied Econometrics  7: S61 – S82.  

  Theil, H. 1971.  Principles of Econometrics . New York: John Wiley.  

  van der Vaart, A. 1998.  Asymptotic Statistics . Cambridge Series 

In Statistical and Probablistic Mathematics. Cambridge, UK: 

Cambridge University Press.             

  6  If the errors are homoskedastic, so that   ν   
1
  =   ν   

2
 , then the covariance 

contains an additional term, see Carter and Steigerwald (2011) for 

details. 

Brought to you by | University of California - Santa Barbara
Authenticated | 128.111.96.142

Download Date | 9/12/13 11:07 AM


